
(WI. J. S"I,Js S'n..:I",~' Vol. ::5. ~o. I I. PI'. 13>/·135>. 1989
Pnnlcd ,n Gn:at Bnla;•.

00~/6113 89 5300•.00
!: 1989 Pergamon Pn:ss pic

STEADY-STATE CRACKING IN BRITTLE
SUBSTRATES BENEATH ADHERENT FILMS

ZHIGANG Suo and JOHN W. HUTCHINSON
Division of Applied Sciences. Harvard University. Cambridge. MA 02138. U.S.A.
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Abstract-A crack in a brittle substrate parallel to the film/substrate interface is considered. Stress
intensity factors are obtain~-d as a function of film/substrate thickness. elastic properties and edge
loads at arbitrary crack depth. These results. combined with the criterion KII == O. are used to predict
the steady-state cracking depth. The critical combination of residual stress and film thickness below
which steady-state substrate cracking is avoided can be inferred provided. the substrate toughness
is known.

1. INTRODUCTION

Today"s technology demands devices joined by many combinations of structural material
groups (ceramics. metals. polymers). The evaluation and enhuncement of the mt."Chanic~11

reliability of these inhomogeneous structures h~lve emerged as high priority subjects to both
the matcri~lls science and solid mechanics communities. Cracking ~lOd decohesion processes
in filtn/substrate systems h..lve been studied extensively in recent years. The cmcking path
and pattern vary substantially for different film/substrate systems with dil1erent relative
fracture resistances of film. substrate and interfllce. sign of the residual stress. etc. When
films arc exposed to residual compression. there arc two muin ways in which failures can
occur: films may buckle from substrates and delaminate (Evans ~md Hutchinson. 19S4;
Argon l't al.. 19X9); or suhstmtes may split along the direction perpendicular to the
interfaces (Gruninger ('t al.. IIJX7). For films under residlmltension. decohesion can initiate
at the edges of the specimen. or ~It an internal cr.lck in the film. running .1Iong the interllKe
.It tirst. and then either continue to propagate along the interface if the interlace has low
enough toughness or deviate into the substrate if its toughness is sul1iciently low. The
interfacial cracking process in tHm/substrate systems is beginning to be understood. Some
recent efforts in this direction can be found in Argon et al. (1989). Charalambides et ,t1.
(19Hl)). Kim and Jiang (1986) and Suo and Hutchinson (1989a.b). Some remarkable
photogmphs ofcracking in films arc presented in Argon et Cli. (198l). where an amorphous
SiC coating is deposited on a Si single crystal wafer with (100) surface and where cmcks
run away from the initial flaw through the coating parallel to the two <110) directions.
These directions are the stillest in the plane of the (100) wafer and thus produce the largest
tensile misfit stress across them in the coating. Most observed failure modes and the present
swtus of understanding have been reviewed in a rt.-cent article by Evans et al. (1988).

In the present paper. attention will be focused on the cracking process in brittle
substrates. Experiments have revealed that cracks in films exposed to residual tension have
a strong tendency to extend into brittle substrates and evolve into a traj~"Ctory parallel to
the interf~lce (Cannon ('t ClI.• 1986; Hu t!t al.. 19HH: Thouless t!t al., 1987: Drory et ClI.,
1988). This is not an uncommon phenomenon. For a system (Fig. I) consisting of a thin

C, Film (under Tension)

Glas. SuOstrate

Crack Path

Fig. I. A schematic drawing of cr.lcking traj\."Ctory.
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Cr film (under tension) deposited on a glass substrate (Hu et al., 1988), for example. the
crack initiates at the edge of the specimen. extends along the interface for about 1-2 film
thickness and then deviates into the substrate and propagates parallel to the interface at a
depth of4-5 film thicknesses beneath the interface. The initial stage of the process is rather
complicated to characterize. although attempts to model the initial kinking out of the
interface have been made in He and Hutchinson (1989). However, the striking feature that
the crack does tend to run parallel to the interface at some characteristic depth has been
understood owing to systematic efforts combining experiments and theoretical analyses cited
above. In these investigations. observed crack depths were compared with the theoretical
predictions based on the criterion that a crack seeks a depth where KII = 0, and a dose
correlation for many material couples over a wide range of film/substrate thickness was
found. The object of this paper is to predict the steady-state cracking depth for various
film/substrate systems under general edge loading (residual stress is equivalent to a par
ticular combination ofedge loads). and provide the information on the critical combination
of film thickness and external loads below which delamination by substrate cracking can
be inhibited.

In the next section. both stress intensity f'lctors K( and KII are computed for a crack
at arbitrary depth parallel to the interface. (n Section 3 an equation governing the steady
state cracking depth under general edge loads is obtained by enforcing KII = O. In particular.
films subject to residual tension are investigated in detail. The steady-state cracking depth.
and the associated parameter n = Kt/(1Jh. referred to as the decohesion numher (Evans I't

al.• 1988). where (1 is the residual tensile misfit stress in the film and h the film thickness.
are presented for various film/substrate thicknesses and elastic moduli. The latter. in con
junction with the knowledge of the substrate toughness KIp provides the critical combination
rrJ" below whieh steady-state substrate cracking is avoided. (n the final section. two
competing crack paths in film/substrate systems arc considered. A criterion is proposed to
predict the tcndency of a fihn/substrate system exposed to misfit tensile stress in the film to
undergo intert~lce cracking in preference to substrate cracking or vice versa.

1. STRESS INTENSITY FACroRS

The basic plane elasticity problem which is nnalyzed is depicted in Fig. 2n. The system
consists of a thin film of materinl No. f deposited on a substrate of materiill No.2. Ench
m'lterinl is tnken to be isotropic and linenrly elastic. A crack parallel to the interlace is pre
existing in the substrate. The problem is asymptotic in that the two material layers are
infinitely long and the crack is semi-infinite. The structure f~lr ahead and behind the crack
tip is considered as three (composite) beams. with longitudinal load P, and moment M; per
unit thickness ~lcting at the neutral axis ofeach of them. No residual stress is present at this
stuge of development. However. it will be shown in the next section that the residual stress
is equivalent to a particular combination of edge loads. Various length quantities specified
in Fig. 2a arc normalized by the film thickness. h, with A. as relative cracking depth and )'0

as substrate/film thickness ratio. The two parameters. d and do, measuring the levels of the
neutral axes. depend on ). .Ind )'0 and clastic properties, and expressions for them arc given
in Appendix A. The task below is to relate the stress intensity factors. K( and KII • to the
external loads, Ps and Ms. as well as to h. ;'0' ).• and the clastic moduli of the two materials.
It should be emphasized that the solution is quite sensitive to the substrate thickness
(measurcd by )'0) even for vcry thin films. contrary. perhaps. to onc's intuition. (n thc first
collaborated attempt to understand the phenomenon of substrate cracking (Thouless et al.•
1987). the comparison. which gave rise to appreciable discrepancies. was made between a
theoretical prediction based on the solution for an infinitely thick substrate and the exper
imental data obtained. of course, for a finite substrate. These discrepancies were removed
later by considering substrates with finite thickness using finite element calculations (Drory
e/(/I.• 1988).

The nondimensional elastic moduli dependence of bimaterial systems, for traction
prescribed boundary value problems. may be expressed in terms of two Dundurs' (1969)
parameters
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Subscripts I .tnd 2 refer to the two materials in Fig. 2a. '" = 3-4v for plane strain and
(3-\')/(1 +v) for plane stress, r;:: ltl/ltl' v is Poisson's ratio and JL is the shear modulus.
The physically admissible values of et and II are restricted to a parallelogram enclosed
by et ;:: ± I and 'X -4{1 ;:: ± I in the Ct. {J-plane. The two parameters measure the clastic
dissimilarity of two materi.lls in the sense that both vanish when the dissimilarity docs. Two
other bimaterial parameters. :E. the stilfness ratio. and e. the oscillatory index. are related
to Ct and fJ. respectively. by

:E;:: ,~~ = !.+et. e = ..!- In I-IJ
('I I-Ct 21t I +IJ

(2)

where C= (K+ I)/Il. Thus Ct can be readily interpreted as a measure of the dissimilarity in
stiffness of the two materials. Material No. I is stiffer than No.2 as Ct > 0 and material No.
I is relatively compliant as et < O. The parameter e. thus P. as has ~'Cn discussed extensively
in the literature on interfacial fracture mechanics. is responsible for the oscillatory behavior
at an interfacial crack tip. However. it will be apparent later that for the problem considered
now. with the crack tip in a homogeneous material. the solution depends weakly on p.
Hence for many practical applications. taking P=0 can be a very good approximation.

Overall equilibrium requircs that the six loads in Fig. 2a satisfy

P,-PZ-P3 = 0

M Z+M) - M 1-PIh(tlo + ;'0/2 - )./2) +P)h(tloo- )'0/2 + ),(2) = O. (3)

Therefore only four among the six are independent. say. PI. Pl. M. and M). Superposing
the solution for the composite beam in Fig. 2b onto that for the structure in Fig. 2a. one
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finds that the number ofload parameters controlling the crack tip singularity can be reduced
to two. i.e. P and .\1 in Fig. 2c, given by

(4)

where the nondimensional numbers. Cs. are given in Appendix A. It is the reduced problem
in Fig. 2c that will be analyzed below. Once the solution is obtained. the solution to the
general problem in Fig. 2a can be readily constructed by reinterpreting P and AI via (4).

In the following the functional form of the stress intensity factors. K1 and KIl • of the
system in Fig. 2c is sought. It is worthwhile to bear in mind that the solution in general
should depend on P. M. h. Cz (or cd and dimensionless parameters ;'0. ;.. :x and p.

The energy release rate can be calculated exactly by using the strain energy stored in
the structure per unit width per unit length far behind the crack tip. The result is a positive
definite quadratic in P and I'd which can be written as

c, [P
Z

M
Z

PM, ]
G = 16 Uh + VII' +2 Jii~;h Z Sin i'

(5)

where U and V arc dimensionless positive numbers ,lnd the angle i' is restricted to the range
li'l < 1t/2 for ddiniteness. Expressions for these quantities can be found in Appendix A.
Notil:e that all the nondimensional quantities appearing in (4) and (5) depend only on ;'lh

;. and ~ (thus :xl. but not on {t, This clearly indil:ates that the energy release rate for the
general problem in Fig, 201 is {i-independent.

The stress intensity fal:tors. 1\1 and 1\11, depend linearly on P and At. whidl. in eon
jUIll:tion with dimensional analysis. dil:tates the funl:tional form

I [P M11\1 + i1\11 = 1I + II _
j2 jUh jVh'

(6)

where i = J - I and 1I and hare nondimensional complex numbers depending on :x. f$. ;.
and ;.", Furthermore. sinl.:e the energy release rate is related to the stress intensity 1~ll.:tors

by

comparison of eqns (5) and (6) reveals that the numbers must satisfy

lal = I. Ihl = I. iih+ah = 2 sin i'.

(7)

(M)

Equation (H) provides three constraints among two complex numbers. Hence only one real
quantity is undetermined. which is introduced as w. such that

(9)

The angle (t) only depends on:x. p. ;. and )'(h and will be calculated and discussed shortly.
Now it is possible to rewrite (6) more explicitly as

or

. '. I [P ',.. M ] ,..,
K1+ IK II = J2 jt),; -Ie' ..../V/~l e

(10)
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Table 1. w(a.. /1. AO • <Xl, l) (in degrees)
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~ - .. -.6 -.. -.2 0.0 0.2 0.• 0.6 0.'

1\ -.. 0.0 -.. 0.0 -.3 0.1 -.3 0.1 -.2 0.2 -.2 0.2 -.1 0.3 -.1 0.3 0.0 U

0.1 45.7 "'3 .604 45.4 .7.6 .7.$ 49.7 49.1 51.1 53.1 54.6 5604 51.0 6U 61.9 66.0 61.5 75.3
0.5 54.9 52.4 55.6 52.0 54.7 51.1 ".1 51.0 54.2 SQ.5 54.9 51.0 5U 5l.4 56.9 53.$ 60.3 SI.O
\ 54.4 53.1 ".2 53.2 54.7 n.s 54.6 51.9 53.5 SO., 53.2 SO. \ 52.2 49.2 n.s 49.\ 53.3 SO.O
U 53.5 52.9 54.2 53.\ 54.1 52.7 53.9 52.2 53.0 51.2 52.4 SO.3 5\.2 ".9 SO.5 47.' 49.7 46.1
2 53.1 52.7 53.6 52.9 53.$ 52.6 53.4 52.3 52.7 5.... 52.\ SO.5 SO., 49.\ 49.6 47.6 47.' 45.5
3 52.6 52.4 52.. 52.5 52.9 n.s 52.. 52.3 52.4 51.7 51.7 SQ.9 SO.6 49.7 49.1 47.9 46,4 44.\1
4 52.3 52.4 52.5 52.4 52.6 52.. n.s 52.2 52.2 5\.1 51.7 51.2 SO.6 SO.O 49.2 .... '16.2 45.\
5 52.3 52.2 52.. 52.3 n.s 52.3 52.4 52.3 51.2 52.0 51.' 51.$ SO.9 SO.$ .9.4 ".9 .6.4 45.6
6 51.2 52.2 52.3 52.3 52.. 52.3 52.3 52.2 52.2 52.0 5\.1 51.6 51.0 SO., .9.6 .9.3 46.7 46.1
\0 52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.0 52.0 51.1 51.7 5\.4 51.3 SO.4 SO.2 47.9 47.7

K1= ::.m COS W+~ sin (w+,)
..;2Uh 2Vh)

K P. M (
II = r;;;;;. sm w- ~ cos w+y)

..;2Uh ..;2Vh 3
(II)

so that the stress intensity factors are fully determined apart from the single dimensionless
re4l1 function W(IX. P. A.u. ,i,). From (It) one can restrict w to the range 0 < W < n/2 to recover
the positive signs of K, and KII as anticipated for the special case P> 0 but M =O. It is
signific4lnt to note that of the two parameters. IX and P. characterizing the elastic dissimilarity
of two materials. IX is by far the more important one. since Penters the formuhltion only
through w. and it will be clear soon that w depends weakly on p. Moreover, detailed
calculations below show that w is almost invariant over wide ranges of the parameters IX. P,
)'0 and A.. A proposal of taking w = 52" will be made for the situations where only crude
estim,ltes arc desired.

Specific determination of the function W(IX./J. A.u. A.) requires that the crack problem be
rigorously solved for one loading case for a given structure. i.e. prescribed values of tXt P. A.
and ,to' This has been done in Appendix B by solving the integral equation based on
continuously distributed edge dislocations. The function w(tX. p, A.u.;') is listed in Tables I
and 2 at A.u= 00. 10. respectively. for various IX and some extreme values of P. at several
selected cracking depths ;,. The dependence of won the four variables is relatively weak. It
is believed that w is analytic in 1/..1.0 for large A.o, and therefore w can be well approximated
by linear interpolation in 1/..1.0 between 1/;'0 =0 and 0.1, where values of w have been
tabulated. Since Penters the stress intensity factors formulae (II) only through w, and from
T.tbles I and 2 one knows that w is a very weak function of p, it is apparent that taking
fJ = 0 can be a very good approximation for many applications. For this purpose we have
listed more extensively the values of w at 1/..1.0=0, 0.05, 0.1, for various IX and;' in Tables
3. 4 and 5, all with p= O.

Contact can be made with some earlier works. For a thin film bonded on a semi-infinite
substrate, that is )'0 = 00, eqn (II) is reduced to

Table 2. w(a.. fl. Ao • 10, A) (in degrees)

~ -.. -.6 -.4 -.2 0.0 0.2 0.• 0.6 0.11, -.4 0.0 -.. 0.0 -.3 0.1 -.3 0.1 -.2 Q.2 -.2 Q.2 -.1 0.3 -.\ 0.3 0.0 U

0.5 54.' 52.3 55.• 52.0 54.$ 51.0 54.7 SO.9 53.9 SO.4 54.5 SO.9 54.$ 51.4 56.4 53.$ 59.4 57.'
\ 54.0 52.. 54.' 52.9 54.4 52.2 54.3 5\.1 53.3 SO.7 n.o SO.2 52.0 49.2 52.3 49.3 '3.\ SO.5
I.S n.1 52.5 53.' 52.7 53.6 52.3 5U 51.9 52.6 SO.9 52.0 SO. \ SO., .... SO.3 4'.0 4\1.\1 47.6
2 52.5 51.2 52.9 52.3 52.1 52.0 52.7 51.7 52.0 SQ.9 5U SO. I SO.2 .... 49.2 47.6 41.1 46.4
3 51.$ 5U 51.7 5U SI.6 5\.3 5U 51.0 S1.0 SO.4 SO•• 49.7 .9.3 41.6 41.2 47.3 46.6 45.6
4 SO.4 SO.3 SO.• SO.4 50.4 50.2 SO.2 SO.O 49.' 49.5 49.3 49.0 41.$ ....\ 47.4 46.9 45.1 45.2
5 49.0 49.0 49.1 4!iI.0 49.0 4'.9 41.9 41.7 41.6 41.4 41.\ 4'.0 47..5 47.2 46.6 46.3 4S.1 44.'



1341 Z. Suo and J. W. HUTCHINSON

Table 3. w(:t. fJ =O. Ao = 00. A) (in degrees)

~ -.8 -.6 -.4 -.2 0.0 0.2 0.4 0.6 0.8

0.05 39.8 42.4 45.8 48.9 52.0 55.5 59.2 63.6 70.0

0.1 44.3 45.2 47.2 49.5 52.0 55.1 58.4 62.7 68.5

0.2 48.7 48.3 49.3 50.4 52.0 54.2 57.0 60.6 66.3
0.3 50.8 50.2 50.6 51.1 51.0 53.6 55.7 58.7 64.0
0.4 51.8 5t.6 5t.4 5l.S 52.0 53.1 54.6 57.1 6t.9
0.5 52.4 52.3 52.0 51.8 52.0 52.7 53.7 55.8 60.1
0.6 52.7 52.7 52.3 52.0 52.0 52.4 53.0 54.6 58.3
0.7 53.1 52.9 52.6 52.2 52.0 52.1 52.5 53.6 56.8
0.8 53.1 53.1 52.8 52.3 52.0 5t.9 52.0 52.8 55.5
0.9 53.2 53.2 52.9 52.4 52.0 51.8 5t.7 52.1 54.3

1 53.1 53.2 52.9 52.5 52.0 51.7 5t.4 5l.S 53.3

1.2 53.0 53.2 53.0 52.5 52.0 51.5 50.9 50.6 5l.S

1.4 52.9 53.1 53.0 52.6 52.0 51.4 50.6 50.0 50.2

1.6 52.8 53.1 52.9 52.6 52.0 51.3 50.5 49.5 49.2

1.8 52.8 53.0 52.8 52.6 52.0 51.3 50.3 49.2 48.4

2 52.7 52.9 52.8 52.5 52.0 51.3 50.3 49.0 47.8

3 52.4 52.5 52.6 52.4 52.0 5t.4 50.3 48.7 46.4

4 52.3 52.4 52.4 52.3 52.0 5t.4 50.4 48.9 46.2

5 52.2 52.3 52.3 52.2 52.0 5t.5 50.7 49.2 46.3

6 52.1 52.2 52.2 52.2 52.0 51.6 50.9 49.6 46.6

7 52.1 52.2 52.2 52.2 52.0 51.7 51.1 49.8 47.0

8 52.1 52.1 52.2 52.1 52.0 51.7 51.\ 50.\ 47.3

9 52.1 52.\ 52.1 52.1 52.0 51.8 5t.2 50.3 47.6

\0 52.\ 52.\ 52.\ 52.\ 52.0 51.8 51.3 50.3 47.9

( 12)

The nondimensional effective cross-scction. A. and moment of inertia. I. of the composite
be.lm consisting of the liIm and spalied portion of the substrate can be found in Appendix
A. This special case was derived in Drory et al. (1988) with different notations. and these
authors were able to find an l.lpproximate value of (J) in the following way. For the film and
substrate with identical materiul. i.e. 0( = (J = 0, w is obviously independent of ).. The (J) for
this case can be extracted from the solution presented in Thouless et al. (1987), which is

Tabil: 4. w(:t./J = O. All = 20. l) (in degrees)

~ -.8 -.6 -.4 -.2 0.0 0.2 0.4 0.6 0.8

1 53.0 53.1 52.9 52.6 52.2 51.8 51.S 5t.7 53.6

2 52.5 52.7 52.7 52.4 51.9 5t.2 50.2 49.0 48.1

3 52.3 52.4 52.4 52.2 51.8 5t.2 50.2 48.7 46.9

4 51.9 52.0 52.0 5t.9 51.6 5t.O 50.1 48.7 46.6

5 51.6 51.7 St.7 51.6 St.3 50.8 50.\ 48.8 46.6

6 51.3 5\.3 5t.3 51.2 51.0 50.6 49.9 48.7 46.6

7 50.8 50.8 50.8 50.7 50.5 50.2 49.6 48.5 46.5

8 50.3 50.3 50.3 50.2 50.0 49.7 49.2 48.2 46.4

9 49.7 49.7 49.7 49.6 49.4 49.2 48.6 41.9 46.2
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Table S. w(:z. fJ 0: O. Ao 0: 10. A) (in degrees)

~ -.1 -.6 -.4 -.2 0.0 0.2 0.4 0.6 0.1

.05 39.9 42.4 45.6 41.9 52.2 55.5 59.1 63.3 70.0

0.1 44.3 45.0 47.0 49.5 52.2 55.1 58.5 62.4 67.9

0.2 41.1 48.4 49.1 50.4 52.1 54.3 56.9 60.4 65.6

0.3 50.8 50.2 50.4 51.0 52.1 53.5 55.6 5ll.5 63.3

0.4 51.1 51.3 5l.2 51.4 52.0 52.1) 54.4 56.1 61.2
0.5 52.3 52.0 51.7 51.7 51.9 52.5 53.5 55.4 59.4

0.6 52.6 52.4 52.1 51.9 51.9 52.1 52.8 54.3 57.8
0.7 52.8 52.6 52.3 52.0 51.9 51.9 52.3 53.4 56.4

0.1 52.1 52.8 52.5 52.2 51.9 51.7 51.1 52.6 55.1
0.9 52.9 52.9 52.6 52.3 51.9 51.6 51.5 51.9 54.1

1 52.9 52.9 52.7 52.3 51.9 51.4 51.2 51.4 53.1
1.2 52.8 52.9 52.7 52.3 51.1 51.2 50.7 50.5 51.6

1.4 52.6 52.1 52.6 52.2 S1.7 51.2 50.4 49.9 50.4
1.6 52.S 52.6 52.5 52.l 51.6 50.9 50.1 49.4 49.4

1.8 52.3 52.5 52.4 52.0 51.5 50.8 49.9 49.0 48.7
2 52.2 52.3 52.2 51.9 51.4 50.7 49.8 48.8 48.1

3 51.4 51.4 51.4 S1.1 SO.7 SO.O 49.l 47.9 46.6

4 50.4 50.4 50.3 50.0 49.7 49.2 48.4 47.3 45.8
5 49.0 49.1 48.9 48.8 48.5 48.0 47.4 46.S 45.1

6 47.5 47.5 47.4 47.2 46.8 46.4 45.9 4S.4 44.2
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w = 52.14' (w = 52.0" from the present unalysis). This (J) vulue was taken. with some further
justilication. for lilm uo4! substrate ofdHli'rt'n/ mutcriuls. i.e. with (J) = 52.14". (12) becomes

P M
K1 = 0.434 JAh +0.558 J1J~i

P M
KII = 0.558 J - -0.434 J--C::=::='

Ah flr l
( 13)

Compurison of CJ) = 52.14') with those CJ) values listed in Tuble I for~. fJ ,p 0 suggests that
cqn (13) is u good approximation provided that the IiIm is not too stiff and the crack depth
is not too smull. We propose that the approximation w = 52' can even be taken for finite
substrates in eqn (II) according to the vulucs listcd in T.lbles 1-5. As a matter of fact. most
of our .Ipplications below were first done with this simplification and then the crude results
were relined using the more accurate values of w in those tables.

3. STEADY-STATE CRACKING DEPTH AND DECOIIESION NUMBER

As mentioned before. the steady-state cracking position is determined by enforcing
All = 0 at the crack tip. From (II) this leads to

cos (w+'l') = rv Ph.
sinw ~U M

(14)

For a given film/substrate system, i.e. prescribed ~. fJ and )'0' under a given combination of
load. PhiM. the solution of ). to eqn (14) gives the steady-state cracking depth. This depth
is then substituted into (II) to calculate K1• Finally by letting K. equal to Klo • the toughness
of the substrate. one can determine the critical combination of loads.
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Film under tension
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Sub.lral.

fiiii:tMhi*"'*4i
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Fig. 3. Equivalent edge load for misfit stress. (a) There is a misfit strain across the film/substrate
interface. (b) Cut along the interface. (c) Stretch and paste; no misfit strain is present across the

film. (d) The equivalent edge load.

The general nature of the edge load combination of the structure in Fig. 2a provides
the flexibility to simulate various practical problems. As an example. cracking driven by
residual tensile stress in the film (Fig. 3a) is to be considered in detail. Here (1 is the misfit
stress in the film relative to the substrate. i.e. (1 equals the film stiffness. 8/c,. times the misfit
strain. The "cut and paste" technique indicates that the crack tip stress field induced by the
misfit stress (1 is exactly the same as that by the edge loads shown in Fig. 3d. The stress
intensity factors can be computed using the solution to the problem in Fig. 2a if the
following identification is made:

The reduced loads in Fig. 2c arc obtained from (4). i.e.

The energy release rate can be computed from the general formula (5). One may obtain a
symmetric form for this special case directly from Fig. 2a by taking the dillcrence between
strain energy stored in the composite beams per unit width per unit length far behind and
far ahead of the crack lip. i.e.

( 17)

The steady-st'lte cracking depth. ).• is solved from (14) for various 0: and ;'ll (lJ is takcn
10 be zcro). The results arc plotted in Figs 4 and 5. It is remarkable that the solution is so

o .02 .04 .06 .08 .1

II A,
Fig. 4. Steady-slate cracking depth as a function of film/substrate thickness ratio.
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Fig. 5. Steady-state cracking depth as a function of Dundurs' parameter.

U = K/Oh'"
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Fig. 6. Dccohesion number vs Dunuurs' parameter.

sensitive to the substrate/film thickness ratio, Ao• even for very large Au. as well as to the
Dundurs' parameter~.which is a meusure of stiffness ratio of two m.tterials. This critical
value of ;. is then used to calculute K1 from (II). The decohesion number. n == K.laJh. is
piottcd uguinst ~ for I/Ao == 0 and 0.1 in Fig. 6. providing the critical combination aJh
below which stc<ldy-state substrate cmcking is inhibited if the substrate toughness. K1c • is
known. The decohesion number is somewhat indifferent to the IiIm/substrate thickness ratio
in the range 10 < )'0 < 00. This clearly indicates that the critical combination aJh is almost
a constant for the substrates with the same material but different thickness. as long as the
substrates arc thick enough. However. the decohesion number is strongly dependent on
film/substrate stiffness ratio. The decohesion numbers for some cases arc listed in Table 6.
A litting curve for n vs L relation for a thick substrate P'll == (0) is given below

Tilblc 6. Dccohesion number n = . hr.: vs 2 and An
trJh

~ -.8 -.6 -.4 -.2 0.0 0.2 0.4 0.6 0.8

- 1.92 1.28 0.96 0.75 0.59 0.46 0.36 0.27 0.18

10 1.86 1.21 0.89 0.68 0.53 0.40 0.29 0.19 0.09
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Fig. 7. Energy release rate ratio as a function of Dundurs' p'lramo:ter.

K, {(3.501:-0.63)-0<.

n = ~-Ji; = 0.9441: -04 -0.354.

I ~ I: ~ 10

n.1 ~ 1: ~ I
(I ~)

where 1: is the film/substrate stiITness ratio dclined in (2). In the above cakulations. (I)

values arc ootained by linear interpolations with respect to I/).o and ;. between those listed
in Tabks 3 5.

4. ON TilE COMI'ETING CRACKIN(i IWrllS

f lere we address the tendency of a film/substrate system loalkd by a tensile mis/it stress
in the /ilm to undergo interface cracking in preference to substrate cracking or vice versa.
The transient crack path is not analysed. The entire picture will be quite complicated if the
tmnsient process is considered. since as illustrated in Fig. I. cmcks often initiate along an
interface and then kink out of the interface if the toughness of the substrate is sullkiently
low. Here we simply compare the energy release rate avaibble for steady-st,lte suostmte
cracking with that available for interface cracking. Then. knowing the critical energy release
rate for the interface and for the substrate. one can infer whil.:h path ofcral.:king is the more
likely.

As in Section 3. denote the energy release rate for steady-state substrate cracking (at
the depth where KII = 0) by G. Denote the energy release rate for a semi-infinite crack along
the interface by G,. The interface crack is mixed mode and a detailed calculation in Suo
and Hutchinson (1989a) indicated that the phase angle of the stress intensity factors is
around 7(/4 for a wide range of film/substrate systems for the tensile misfit stress loading.
The energy release rate for the interface crack G, is given by (17) with ;. = 0 (since G
continuously approaches G, as ;. ~ 0 "). The ratio GIG, is plotted in Fig. 7 as a function of
=t for various film/substrate thickness ratios. This ratio is relatively insensitive to the
properties of the film/substrate system. varying between 0.55 and 0.83 for most systems.

Let Gc be the substrate toughness and let G,c be the interface toughness (which. in
general, can be expected to be a function of the phase angle of the interface stress intensity
factors). If

( 19)

the system is more likely to fracture by interface cracking than substrate cracking.
Conversely. if
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substrate cracking will be favored.

IJ..l7

(20)

5. CONCLUDING REMARKS

The present investigation has provided a relatively complete solution to the problem
of a semi~infinite crack parallel to the interface of two bonded infinite elastic layers under
general edge loads (Fig. 2a). The energy release rate can be calculated exactly from (5).

Exact functional forms of stress intensity factors. eqn (t I). are found with only one
undetermined dimensionless function w(:x. p. A.D. ).). which is then extracted from the numeri
cal solution presented in Appendix B. An approximation w = 52' is proposed for those
situations in which only relatively crude estimations are desired. The general nature of the
problem specified in Fig. 2a makes it convenient to model many problems which might be
of interest to scientists and engineers in the field ofcomposite material fabrication. electronic
device design. coating protection. etc. One particular problem has been worked out in
detail. where substrate cracking depth. and the decohcsion number Kr/(J J" for thc films
under residual tension afC prcdil.:tcd for various film/substrate systcms.
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APPENDIX A: ON COMPOSITE BEA!\tS AND E:-.iERGY RELEASE RATE

Th~ superposition sch~me d~pict~d in Figs 2a-~ is outlin~d here. Various quantiti~s are spt.'Citied in Fig. 201.
where ~ and ~" measuring th~ position of neutral a.,es of the corresponding composite layers are given by

(AI)

where r is the film substrate stiffness ralio d~fined by (2). The stresses in the upper beam far behind the crack tip
ar~ IT:, = IT" = 0 and

(A21

where y is measured from the neutral axis. and A and I. the dimensionless ctft'Ctive cross-section and moment of
inertia of the beam per unit width. are given by

A = i.+1:. 1 {1:P(il-i.)'-J(il-i.l+ 1)+3ili.(~-i.I+i.'}!3.

Similarly. the stresses in the layers far ahead of the erack lip arc ":: = "I: = 0 and

where .1'" is measured from the neutral axis at the heam far ahead of the cr:u:k tip and

Stlperposin~ the structurcs in Figs 2a and h ~ivcs the clluivalent loads l' :lI1d .\1 in Fi~. 2.::

(A3)

(M)

(1\51

when:

/'

A
C,=

tI"

, ., . M,
/ I - ( ,/ , •. (, ,,' M." M I - (', ,\f ,

A
(', = 1 [(i."-I.\,,I-(i·-I.\)I.

"

(A61

(1\7)

The energy rell:ase rate for the sysll.:m in Fig. 2c can be cal<;ulated exactly by t:lking the strain energy stured
in the structure per unit width per unit I<;ngth far behind the crack tip. The result is a positive definite qU:ldmtic
in l' :Illd M whi.:h .:an be wrillen as (5). where

I I I 12[A+(i.,,-i.)/2r
.; =. + '-"", + ......,_..,----;,.,._-
L A A" -I. (I." - I.)

I I 12
~.~ = 1 + (J.~:':::;'i i

sin i' 12[1\ + (i." - }')/21
jui; 'o.,,-}.); ., ..

API'ENDIX 8: INTEGRAL EQUATION FORMULATION AND SOLUTION PROCEDURE

(AM)

A dislocation formulation of the integml equ;llion for the plane elastidty problem of Fig. 2c is used. A
general formulation afthe integral equations for multilayer problems was presented ill Erdogan and Gupta (1'J7l).
An edge dislocation solution used :IS the kernel functions is constructed in Appendix C.

The semi-inlinite crack is simulal\:d by an array of continuously distributed edge dislocations along the
negative x,·;l.'l.is, with x, component h,(';) :It x, = .;. which is to be determined as the solution of the integral
~"qll:ltion. The tracti'lO-fn:e condition along the cr;lek filee results in the integral equ;llion

where the lirst integral is the Cauchy principal value integral. and

for x < 0 (BI)
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(B:!)

The complex-valued kernel functions F,(:;) are given in Appendix C; they are well-behaved in the whole range
-:xl < , < + oc. with asymptotes

as' -:xl. (B3)

We observe that (Bl) alone is not sulfkient to determine B(';) unless the asymptotic behaviors at both the crack
tip and infinity are specified.

The relative crack face displacements are related to the dislocation distribution by

o,(:c)+ioz(:C) =r[b,(~)+ib:(';») d~ = IticzrB(~) d~. for x < o.

Recall the well-known asymptotic eltpression at the crack tip

where h = h, + ihll is the complelt stress intensity factor. From (B4) and (85) one can show

A = (21t) 1;: lim BWJ=.~.
:-_0

(84)

(B5)

(86)

Thc behOlvior of H(~) OIS ~ - -,~ cOIn be specified by the displOlcelllcilt fields fOlr behind the crack tip. The results
arc l!iven below

[' {I M 4 [(, ~ 'J}
1111 10WI = - IIlth A +- (.ill-A)' + 1;.-). +m .!A1I-- A)2 - '-_

P {Sin f m}~Rc [0(';)1 = - - -.- -- -+ -. - + rCOlI cunstOlnl
Knlr JUV J- lr

;IS ~ - - <r) (87)

wherc", = M/{Ph). The "rcal constant" is not known a priori. but must be determined as part of the solution to
the inlcgml cquOllion. Since il is Ihc quanlity w(2./I. All. A) in (10) that is to bc elttracted from the sulution 10 the
inlegrOlI cquOllion. only one loading combinOltion needs to bc solved. In our formulation. Pis sello bc unity and
m is chosen sueh Ihal Re (8(';» remains linite as ~ - - 00 ; that is.

-1<u<1

Makc thc change of variabk'S

and let

tv.
m = - -V U SIR y.

a-I
.t =;+1'

I-I
~ = /+1' -I < I < I

• 2{u-t)
~ == x-~ = -------.

(u+ I )(/+ I)

(BII)

(8'.1)

(810)

Then wilh A{/) == B(~), Ihe integral equation (81) can be reduced to

f' A(t) d f' F,WA(/)+[I +1+FzW!A(/)_. 1+ , d/"'O,
-, a-I _I (I +1)'

for -I < u < I (BII)

where the first integral is the Cauchy principal value integral. With asymptotic behaviors (B6) and (B7) in mind.
one can take the appro:'limation for ..1(/) as
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(BI::!)

where 1m (B( -x II is specified in (B7) while Re [B( -Xl II is an unknown finite number. T,(t) is the Chebyshev
polynomial of the first kind of degree j and the as are complex coefficients which must be determined in the
solution process.

When substituted into (B II). the representation for A(t) leads to an equation of the form

v

L (a./du.k)+Iz.!,(u.k)1 + Re (B( - 'X?)}/~(u) = I.(u).-1
where the terms I) for j = 1.4 involve integrals such as

(BI3)

(814)

These integmls must be evaluated numerically for given values of u and k.
The solution procedure is as follows. Let a set of 2N real unknowns be Re (B( - 'X? l] plus the real and

imaginary p,lrts of a. for k = I. N. excluding the real part of £IN (i.e. effectively. Re (£IN} is set to zero). This set
of::!N unknowns is used to satisfy the real and imaginary parts of (8 II) at N Gauss-Legendre points {u,: on the
interval - I < u < I. Once the as have been determined. the complelt stress intensity factor can be computed.
using (86) and (BI::!). from

I:. = (2lt)~ :{B( -(0)+ 2 t a.}..-1
The geneml e)(prcs.~ion for Kin (10) ;lpplies to the present C;lse with P = I. M = ",II. so that

(BI5)

(fIlo)K = cos_~_, elY elm.

/2(Th
The numerie;ll solution yields holh Ihe real ;lml the imaginary flarts of K. The magnitude of K is known from the
eller~y release rale ami thus provides a eonsistem:y cheek on the aCCUT<lcy of the solution. The results repnrh:d in
Tahles I 5 were el"nflul~...1with N hetw~'Cn 10 and 15. The consistency ch~'Ck was s;llisficd to heller lhan 1).1 %.
It is helieved lhat Ihe accuracy of w is cOl1lp;lT<lhle.

AI'PENDIX C: AN EDGE DISLOCATION IN COMPOSITE LA YEI{S

The construction of the dislocation solution used as the kcrnel in the integral equation (III) is summarized
here. The flhlne e1aslicity flrublem is specified in Fig. Cia. An edge dislocalion 'tilh comflonents hi and h: is
emhedded in medium No.2 at (0. -II). The entire extern:.1 bound:lry is traction·free. The problem is solved by
sUflerposing the following two structurc:s

(i) two honded half·planes Wilh an edge dislocation at (0, -tl) (Fig. Clb) and
(ii) two bouded layers ...itlllJllt dislocation (Fig. Clc) bUI with tractious prescrihed along its upper and lower

boul\llari~'S as the negative of those calculated along y = It and -Il ill structure (i).

Problems like (i) wilh point·wise singularity em~-dded in one of two bonded semi·infinite media can he
soh'ed in general by analytical continuation arguments. With: = x+iy, two analytic functions '11(:) ,tnd Q(:)

used below relate to str~'Ss and displacement components by

0' .. +0'" = 2[.!>(:)+1"ji<:)1

a,.,+il1" = (1l(:)+Q(:)+(:-:)I!>'(:)

(CI)

If the potentials.•1,,,(:) alld Q,,(:). fm a singularity embedded in an itt/illit<· l/tlll/ayellemls plane of material No.2
:lre known. the potentials for the problem of two bonded half·pl:mes with the S<lme singul:trity in material No.2
can be constructed by remark"hly simple rel:ltions (Suo. 1989):

: in No. I

: in No.2

: in No. I

: in No.2.
(C2)

Herc " :lnd n measure the inhomogencity by

For an edge dislocation :It : = s (s = - it! for our c:lse).

(0)
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'1',,(;) '~Il[ I J. U,,(;) = 1/[ li-s .]+n[ I ].
;-'.' (;-sr ;-s

I .
1/ =.' (h, +11>,).

1t1l'!
(C~)

The stresses along; = ~ - id in Fig. C I h derived from the potentials via (C2) arc

where

(C5)

• 16£ld'~

11,(,1 = (~' +~d'J"
lind'

(~-2id)"

The solution prol:edure to prohkm (ii) is similar to that developed in Civelek (19l15) for a homogeneous
slrip. Such mullil;lyer prohkms I:an he I:onveniently solved using Fourier transforms with two real potentials.
th.,I') and X(x..I'). satisfying (Coker and Filon. 1931)

where ~ = ,"/,"X+ '''''''.1'. The stresses and displal:ements com he derived from

«("7)

(In' =
i)'U

- ~:\:-t'.;·

,'U ,'X
~IIII. == -, +(/\ + I), .

IX 'y
(ell)

The general approal:h to the multilayer prohkms is as follows. For eal:h layer. the solution of nx..rl can he
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separated into two parts: one is symmetric in changing x to -x. the other is antisymmetric. For the symmetric
part. for example. upon satisfying (C7) the two potentials can be represented by Fourier integrals

(C9)

The constants A, are then solved by matching the displacements and tractions along the interface and satisfying
the external boundary conditions. The following integrals may be helpful to obtain the Fourier transforms of the
tractions on the external boundaries

f,
" cos .lx . f,< x sin AX

1.(A.a) == (' , • dx. J.(A..a) == " • dx. (a> 0).
o r +a') 0 (x- +a-)

One can easily verify the recursive relations

(CIO)

I CJ.
J. +, == - ma ('a . (Cll)

Further algebraic details arc omitted. The fin.1I results arc reported below. The stresses along: == ~ -iI/ in Fig. CI
can be represented by

where

G,(() = [Q~(C)-R,(()J+i[Q,(')+R~(C)1

G~(C) == [Q~(" + R,(C» +i[R,(C) -Q,(C»

where the Qs and Rs are defined oy the Fourier integrals

Q,(C) == r' {I-C, + .ldC~1 e'" +[ - c, + i.dC,1e 'of} CllS i.; dA
j"

R,(C) == r- ([-C,+(I+.ld)('~1 e'''+[(',+(I-';'I/)('.1 c "': sin.lC tI.l
j"

Q~(')== r'a-O,+.ldD,lc'''+I-Dj+i.dD.lc "'}sini.Cdi.
j"

R,(C) == r~ ([0, -(I + U)D ,I c'" - [D, + (l -i.,l)O.1 c··": cos .l' dA
j"

whcrc thc ('S and Ds arc solvcd from thc lincar algcbraie eljuations

(CI~)

(CU)

(CI4)

lIerc

[H 1/ -('1.-{1) fI
[ -c" -i.1I e· lA -c"'" -i.1I e" ] I

_ (XO-I/)
I+fl -2(x-{/) -('1.-{1)

P, == .lA (l-i.ll) C'" c" (I +.lh) e" i-~-c -II 1-f1 -f1
lex-PI -(x-{/) 0 I +{/

[ _e
w i.1I c·1I _C·A.II AI/ c· w

]
p~ = _c'" (I +A/J) C'" c·';'" (I-A/J) C' W

{
A-n }X, = - - -y- -[(I +m(ll+d)+(A-mlrli. e"''''')

X~ == _{2+~+n -[(l +nHIr+d)+(A-mlrli.} e·,,··,n
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X3 = _{[ - A;n +n<H-dlA-2nHdA~Je-IH+J"+(H_tI)i. c:.'H_JI'}

X. = - {[A;n -n(H+dlA+2nHdA ~J e-IH+JI'+[I_ (H -tI);.) e-'H-J"}

r l = -f+~+n +[(I+n)(h+dl+(A-n))i.} e-'hJIA

Y~ = +{A;n _[(\ +m(h+dl+(A-m]A} e-1hJIA

Y3 = _{[A;n +n(H+dlA+2nHdA~Je-IIl+J"+[1 +(H-dli.] e- ,II
- J"}

r. = +{[A;n +n(H-d);.+mHdA~Je-IIl+''''+(H-d)i. e- ,II
-

J1+
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The solution to the problem in Fig. Cia is obtained by superposing (C5) and (CI2). i.e. for the inlinite composite
strip. the stresses at (C. -d) induced by the dislocation at (0. -<I) are given by

and F, = H.... G•.

(CIS)


